Development of Semiempirical Models for Proton Transfer Reactions in Water.
نویسندگان
چکیده
This letter presents a method for the parametrization of semiempirical models for proton transfer reactions in water clusters. Two new models are developed: AM1-W, which is a reparameterization of the classic AM1 model, and AM1PG-W, which is a modified AM1-like model including a pairwise correction to the core repulsion function. Both models show good performance on hydrogen-bonding energies and on proton transfer energy profiles, which are of great importance for proton transfer reactions in large water clusters and in proteins. The parametrization method introduced is general and can be used to develop any other system-specific semiempirical models.
منابع مشابه
Nucleic acid reactivity: Challenges for next-generation semiempirical quantum models
Semiempirical quantum models are routinely used to study mechanisms of RNA catalysis and phosphoryl transfer reactions using combined quantum mechanical (QM)/molecular mechanical methods. Herein, we provide a broad assessment of the performance of existing semiempirical quantum models to describe nucleic acid structure and reactivity to quantify their limitations and guide the development of ne...
متن کاملBenchmark calculations of proton affinities and gas-phase basicities of molecules important in the study of biological phosphoryl transfer.
Benchmark calculations of proton affinities and gas-phase basicities of molecules most relevant to biological phosphoryl transfer reactions are presented and compared with available experimental results. The accuracy of proton affinity and gas-phase basicity results obtained from several multi-level model chemistries (CBS-QB3, G3B3, and G3MP2B3) and density-functional quantum models (PBE0, B1B9...
متن کاملProgress toward chemical accuracy in the computer simulation of condensed phase reactions.
We describe a procedure for the generation of chemically accurate computer-simulation models to study chemical reactions in the condensed phase. The process involves (i) the use of a coupled semiempirical quantum and classical molecular mechanics method to represent solutes and solvent, respectively; (ii) the optimization of semiempirical quantum mechanics (QM) parameters to produce a computati...
متن کاملبررسی محاسباتی انتقال پروتون درونمولکولی ترکیب 3- نیترو- 1،2،4- تری آزول (NTO)
The effect of the presence of compounds such as H2O, NH3, UDMH and NH2-NH2 has been reported on the inter-molecular proton transfer of 3-Nitro-1,2,4-triazole (NTO) using quantum computing. Gaussian 09 program package has been used to calculate geometry optimization and all reactions with 6-311++G(d,p) basis set. In these studies, the substances mentioned in the molecular reactions act as a cata...
متن کاملSpecific Reaction Parametrization of the AM1/d Hamiltonian for Phosphoryl Transfer Reactions: H, O, and P Atoms.
A semiempirical AM1/d Hamiltonian is developed to model phosphoryl transfer reactions catalyzed by enzymes and ribozymes for use in linear-scaling calculations and combined quantum mechanical/molecular mechanical simulations. The model, designated AM1/d-PhoT, is parametrized for H, O, and P atoms to reproduce high-level density-functional results from a recently constructed database of quantum ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 10 8 شماره
صفحات -
تاریخ انتشار 2014